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ABSTRACT: In the present paper, we shall prove a fixed point theorem by using generalized weak C-
contraction of integral type. Our result is generalization of much known results.
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I. INTRODUCTION AND PRELIMINARIES

Let (X, d) be a complete metric space and T: X→ X a self-map of X. Suppose that = { ∈ | ( ) = } is the set
of fixed points of f. The classical Banach’s fixed point theorem is one of the pivotal results of functional analysis.

By using the following contractive definition: there exists k [0, 1) such that x, y ∈ , we have

d( , ) ≤kd (x,y)  . (1.1)

If the  metric  space  (X,d)  is  complete  then  the  mapping  satisfying   (1.1)  has a  unique  fixed point .  Inequality
(1.1) implies continuity of T. A  natural  question is that  whether  we can find  contractive  conditions  which  will
imply existence of  fixed point in a  complete  metric space  but  will not imply continuity .
Kannan [10,11] established  the  following  result  in which  the  above  question  has been answered  in the
affirmative.
If  T : → where (X,d)  is  complete  metric  space , satisfies  the  inequality
d( , ) ≤k[d (x,Tx) +d(y,Ty)] (1.2)

where 0< < and  x, y ∈ , then T has a unique fixed point.

The mapping T need not be continuous .The mapping satisfying (1.2) are called Kannan[10,11] type mappings.
There  is a large literature  dealing  with Kannan type  mappings  and their  generalization some of  which  are  noted
in [8] ,[17] and [19].
A similar contractive condition has been introduced by Chatterjee [6].. We call this contraction a C- contraction.

Definition 1.1.1. C-contraction
Let T: → where (X, d) is a metric space is called a C – contraction if there exists 0< < such that for all x,

y ∈ the following inequality holds:
d( , ) ≤k[d (x,Ty) +d(y,Tx)] (1.3)

Theorem 1.1.1. A C- contraction defined on a complete metric space has a unique fixed point.
In establishing theorem 1.1.1 there is no requirement of continuity of the C-contraction.
It has been established in [15] that inequalities (1.1),(1.2) and (1.3) are independent of  one another. C- Contraction
and its generalizations have been discussed in a number of works some of which are noted in [4] ,[8], [9] and [19].
Banach’s contraction mapping theorem has been generalized in a number of recent papers. As for example,
asymptotic contraction has been introduced by Kirk [12] and generalized Banach contraction conjecture has been
proved in [1] and [14].
Particularly a weaker contraction has been introduced in Hilbert spaces in [2]. The following is the corresponding
definition in metric space.

Definition 1.1.2. Weakly contractive mapping
A mapping T : → where (X,d)  is  complete  metric  space is said to be weakly contractive if d( , ) ≤
d(x,y) − ( , ) , (1.4)
Where x, y ∈ , :[0,∞) → [0,∞) is  continuous  and non-decreasing,
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(x) = 0  if and only if  x = 0  and lim →∞ ψ (x) = ∞.

There are a number of works in which weakly contractive mappings have been considered. Some of these works are
noted in [3],[7],[13], and [16].
In the present work in the same spirit we introduce a generalization of C- contraction.

Definition 1.1.3. Weak C- contraction:
A mapping T : → , where (X, d)  is  a metric space is  said to be weakly C – contractive or a  weak C-
contraction if for  all x, y ∈ ,

d( , ) ≤ [d (x,Ty) +d(y,Tx)] − (d (x,Ty), d(y,Tx) ) (1.5)

where : [0, ∞) → [0, ∞) is a  continuous  mapping such that (x, y) = 0  if and only if  x = y= 0 .

If we take (x, y) = k(x+y)  where 0< < then (1.5) reduces to  (1.4), that is weak C – contractions are

generalizations  of  C – contractions.
In a recent paper of Branciari [20]  obtained a fixed point  result for a single mapping  satisfying  an  analogue of a

Banach’s contraction principle for integral type inequality as  below: there exists  c [0,1)  such that x, y ∈ ,

we have∫ ( )( , ) ≤k∫ ( )( , )
Where : → is a Lebesgue – integrable mapping which is summable, non-negative and such that for each>0, ∫ ( ) >0.
Our main result is extended and modified to the weak C – contraction mapping in integral type.

II. MAIN RESULT

Theorem 2. Let   T : → where (X,d)  is  complete  metric  space be a  weak C-contraction,   which is
satisfying  the  following  property:∫ ( )( , ) ≤ ∫ ( )( , ) ( , )

+ ∫ ( ){ ( , ), ( , )}− ∫ ( )ψ { ( , ), ( , ), ( , ), ( , )}+ ∫ ( ){ ( , ), ( , )}
(2.1)

Then T has a unique fixed point.
Where , ∈ [0,1)  with  2 + + ≤1   and : → is a Lebesgue – integrable  mapping which is

summable,non negative  and  such that  for  each >0, ∫ ( ) >0   and : [0, ∞) → [0, ∞) is a  continuous

mapping such that (x,y) = 0  if and only if  x = y= 0 .

Proof :   Let ∈X and for all n≥ 1 , = T .
If = = T . Then is a   fixed point of T.
So we assume, ≠ .
Putting   x = and   y = in  (2.1)  we  have  for  all  n =  0,1,2, …….∫ ( )( , )

= ∫ ( )( , )≤ ∫ ( )( , ) ( , )
+ ∫ ( ){ ( , ), ( , )}− ∫ ( )ψ { ( , ), (, ), ( , ), ( , )}+ ∫ ( ){ , , ( , )}
= ∫ ( )( , ) ( , )
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+ ∫ ( ){ ( , ), ( , )}+ ∫ ( ){ , , ( , )}
− ∫ ( )ψ { ( , ), (, ), ( , ), ( , )}

Since T is Weakly C – contraction, this gives that
ψ { d( , ), 0, d( , ), ( , )} = 0   and∫ ( )( , ) ≤ ∫ ( )( , )

+ ∫ ( ){ ( , ), ( , )}+ ∫ ( ){ , , ( , )}
(2.2)

Now here arise two cases
Case I: - If we choosemax { d( , ), ( , ) }  = d( , )
Then (2.2) can be written as∫ ( )( , ) ≤ ∫ ( )( , )

+ ∫ ( )( , )+ ∫ ( )( , ) + ∫ ( )( , )}
(1- - ) ∫ ( )( , )

=  ( + ) ∫ ( )( , )∫ ( )( , )
= ∫ ( )( , )∫ ( )( , ) ≤K∫ ( )( , )

where k = ≤ 1∶ : If we choosemax { d( , ), ( , ) }  = d( , )
Then (2.2) can be written as∫ ( )( , ) ≤ ∫ ( )( , )

+ ∫ ( )( , )+ ∫ ( )( , ) + ∫ ( )( , )}
[1 – ( + + )]∫ ( )( , )

= ∫ ( )( , )∫ ( )( , )
= – ( ) ∫ ( )( , )∫ ( )( , ) ≤ k ∫ ( )( , )

,where  k = – ( ) ≤ 1 (2.3)

From above both cases:∫ ( )( , ) ≤ ∫ ( )( , )≤ ∫ ( )( , )
- - - - - -≤ ∫ ( )( , )

Taking limit as n → ∞ , we getlim →∞ ∫ ( )( , )
= 0 ,  as  k [0,1) (2.4)

Now we prove that { } is a Cauchy sequence.  Suppose it is not. Then there exists an > 0 and sub sequence( ) and ( ) such that

m(p) n(p) m(p+1)  with( ( ), ( ))≥ , ( ( ) , ( ) )< (2.5)
Now( ( ) , ( ) )≤ ( ( ) , ( )) + ( ( ), ( ) )< ( ( ) , ( )) + (2.6)
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From (2.4), (2.6) we getlim→∞

∫ ( )( ( ) , ( ) ) ≤ ∫ ( ) (2.7)

Using (2.3), (2.5), and (2.7)   we get,∫ ( ) ≤ ∫ ( )( ), ( )
k∫ ( )( ) , ( )
k∫ ( )

Which is contradiction, since k (0, 1). therefore { } is a Cauchy  sequence  Since  ( X,d) is  complete  metric

space , therefore  have  call the  limit z .
From (2.1), we get∫ ( )( , )

= ∫ ( )( , )
≤ ∫ ( )( , ) ( , )
+ ∫ ( ){ ( , ), ( , )}

− ∫ ( )ψ { ( , ), ( , ), ( , ), ( , )}
+ ∫ ( ){ ( , ), ( , )}

Taking limit as n → ∞ , we get∫ ( )( , ) ≤ ∫ ( )( , )
+ ∫ ( )( , )

=    ( + ) ∫ ( )( , )
Which is Contradiction
Therefore = z
That is z is a fixed point of T in X.

Uniqueness  : Let w is  another  fixed point  of  T in X  such  that  z w , then we have

From (2.1), we get∫ ( )( , )
= ∫ ( )( , )

≤ ∫ ( )( , ) ( , )
+ ∫ ( ){ ( , ), ( , )}

− ∫ ( )ψ { ( , ), ( , ), ( , ), ( , )}
+ ∫ ( ){ ( , ), ( , )}∫ ( )( , ) ≤ 2 ∫ ( )( , )

Which is contradiction
So  z = w that is , z  is  unique  fixed  point  of  T  in  X .
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